
ORIGINAL RESEARCH
published: 05 August 2021

doi: 10.3389/fnins.2021.720909

Frontiers in Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 720909

Edited by:

Jun Shi,

Shanghai University, China

Reviewed by:

Pingkun Yan,

Rensselaer Polytechnic Institute,

United States

Kuangyu Shi,

University of Bern, Switzerland

*Correspondence:

Lishan Qiao

qlishan@163.com

Mingxia Liu

mxliu1226@gmail.com

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 05 June 2021

Accepted: 09 July 2021

Published: 05 August 2021

Citation:

Zhang Y, Jiang X, Qiao L and Liu M

(2021) Modularity-Guided Functional

Brain Network Analysis for Early-Stage

Dementia Identification.

Front. Neurosci. 15:720909.

doi: 10.3389/fnins.2021.720909

Modularity-Guided Functional Brain
Network Analysis for Early-Stage
Dementia Identification
Yangyang Zhang 1, Xiao Jiang 1,2, Lishan Qiao 1* and Mingxia Liu 3*

1 School of Mathematics Science, Liaocheng University, Liaocheng, China, 2 School of Science and Technology, University of

Camerino, Camerino, Italy, 3Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC,

United States

Function brain network (FBN) analysis has shown great potential in identifying brain

diseases, such as Alzheimer’s disease (AD) and its prodromal stage, namely mild

cognitive impairment (MCI). It is essential to identify discriminative and interpretable

features from function brain networks, so as to improve classification performance and

help us understand the pathological mechanism of AD-related brain disorders. Previous

studies usually extract node statistics or edge weights from FBNs to represent each

subject. However, these methods generally ignore the topological structure (such as

modularity) of FBNs. To address this issue, we propose a modular-LASSO feature

selection (MLFS) framework that can explicitly model themodularity information to identify

discriminative and interpretable features from FBNs for automated AD/MCI classification.

Specifically, the proposed MLFS method first searches the modular structure of FBNs

through a signed spectral clustering algorithm, and then selects discriminative features

via a modularity-induced group LASSO method, followed by a support vector machine

(SVM) for classification. To evaluate the effectiveness of the proposed method, extensive

experiments are performed on 563 resting-state functional MRI scans from the public

ADNI database to identify subjects with AD/MCI from normal controls and predict the

future progress of MCI subjects. Experimental results demonstrate that our method

is superior to previous methods in both tasks of AD/MCI identification and MCI

conversion prediction, and also helps discover discriminative brain regions and functional

connectivities associated with AD.

Keywords: functional brain network, modularity, feature selection, signed spectral clustering, classification

1. INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive
measure of brain activity and attracts considerable attention for understanding the brain
organization (Bijsterbosch et al., 2017; Zhang et al., 2020). Function brain network (FBN)
derived from rs-fMRI scans has been increasingly employed to computer-aided diagnosis of brain
disorders, such as autism spectrum disorder (Jie et al., 2018a; Wang et al., 2019a,c; Wen et al., 2019;
He et al., 2020), Alzheimer’s disease (AD) and its prodromal stage (i.e., mild cognitive impairment,
MCI) (Stam, 2014; Fornito et al., 2015; Liu M. et al., 2015; Jie et al., 2018b).
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Extracting effective features from FBNs is a critical step to
improve classification performance and interpretability of brain
functional networks (Kim et al., 2019; Qiu et al., 2019). As
shown in Figure 1 (1), three kinds of feature representations have
been employed for FBN-based disease identification based on
different granularities, including global-level topology features,
node-level features, and edge-level features. The first one is
the global topological statistics of the whole FBN, such as
sparsity and efficiency (Hamilton, 2020). Despite its simplicity,
the global statistics may lack specificity. That is, due to their
global characteristics, the global measures cannot help identify
the disease-affected brain regions (i.e., nodes) and functional
connections (i.e., edges) in a brain network. The second category
focuses on node-based graph statistics (e.g., local clustering
coefficients; Wee et al., 2012). They can specifically locate
disease-related regions on the node level, but usually fail to
recognize the contributions of different edges/connections in a
network. Besides, both global- and node-level statistics extracted
from FBNs tend to capture different network properties, which
requires prior knowledge and thus makes the feature design an
intractable problem (Hamilton, 2020).

The third strategy uses edge-level features (e.g., edge weights)
to represent a network (Qiao et al., 2017; Xue et al., 2020),
which is simple and can naturally obtain the localization of
effects on the granularity of edges. In practice, the adjacent
matrix of FBN from each subject is generally concatenated into
an edge vector (removing the redundant part if the adjacent
matrix is symmetric), and then the edge vectors from all subjects
are piled up, as shown in Figure 1 (2). In this case, the edge
features associated with all subjects are stacked into a matrix
for further selection (e.g., through t-test and LASSO). However,
these methods ignore network topologies such as modularity that

FIGURE 1 | (1) Different granularity of feature. From the clockwise direction is the global-level topology feature, node-level topology feature, and edge-level topology

feature, respectively. (2) The mechanism of traditional edge feature extraction in FBN. The network adjacency matrix from each subject is first mapped onto a vector

by removing the redundant part if the matrix is symmetric, and then the vectors from all subjects are rearranged together as an input of the following feature selection

methods.

provides valuable information for understanding the pathological
mechanism of AD-related brain disorders.

Modularity plays an important role in FBN modeling and
analysis, and can help us understand operating mechanisms of
brain (Shen et al., 2010; Gallen et al., 2016; Wen et al., 2019).
Meunier et al. (2009b) conducted FBN analysis and found that
FBN has a hierarchical modular organization with a fair degree of
similarity between subjects. Motivated by the fact that the brain
exhibits a modular organization, we propose a modular-LASSO
feature selection (MLFS) framework that consists of a two-step
learning scheme. Specifically, the proposed MLFS first searches
modular structure of FBNs through a signed spectral clustering
algorithm, and then selects discriminative features using group
LASSO based on modularity information, followed by a support
vector machine (SVM) for brain disease classification. Our
proposed method is validated on the public ADNI dataset (Jack
et al., 2008) with 563 rs-fMRI scans to identify AD/MCI subjects
from normal controls and perform MCI conversion prediction,
with experimental results demonstrating its superiority over
conventional methods.

The rest of the paper is organized as follows. In section 2, we
review the most relevant studies on fMRI-based FBN analysis. In
section 3, we introduce the data used in the study and present
our method. In section 4, we conduct experiments and provide
a comparative evaluation of the involved methods. In section 5,
we discuss the impact of parameters, the number of modules, the
different node-level features on classification performance and
the effect of connectivity variations in FBN, visualize the disease-
related features (functional connections) and modules identified
by our proposed method, and present limitations of this work as
well as future research directions. Finally, we conclude the paper
in section 6.
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2. RELATED WORK

In this section, we briefly review the most relevant studies on
feature representation of functional brain networks (FBNs) and
existing methods on modularity analysis of FBNs.

2.1. Feature Representation of FBNs
As the basis of subsequent classification/regression tasks, feature
representation of brain networks is essential for FBN analysis.
Currently, three categories of features based on different
granularities (global/network-level, node-level, and edge-level)
have been employed for representing FBNs.

The first two categories (i.e., global-level and node-level
representation) use topological measures to represent the whole
brain or brain regions for identifying patients from healthy
controls. For example, Feng et al. (2020) extracted spatial and
temporal eigenvalue features from high-order dynamic FBNs
as feature representations of each subject for AD classification.
Jie et al. (2016) extracted local clustering coefficients from
hyper-connectivity networks as features to identify subjects
with MCI. Although these studies have achieved good results,
the topological measures involved in these methods need to
be designed manually, which is cumbersome, time-consuming,
and also subjective. In the third category, numerous studies
represent FBNs by edge-level features (e.g., edge weights) for
each subject, followed by edge vector-based feature selection
for classification. For example, Sun et al. (2021) extracted edge
weight features from sparse FBNs to identify patients with MCI
andAutism spectrum disorder (ASD) disorder. Liu F. et al. (2015)
extracted connectivity strengths from FBNs as features for social
anxiety disorder classification. However, these studies usually
ignore the overall topology of functional brain networks (e.g.,
modularity), and the edge features are generally of large scale,
possibly resulting in a series of problems such as the curse of
dimensionality and the error of multiple comparisons (Garcia
et al., 2017).

2.2. Modularity Analysis of FBNs
Previous studies have shown that FBNs exhibit a modular
organization, such that they are comprised of a group of sub-
networks (Gallen et al., 2016). Research on network modularity
helps us to understand the organizational principles of the brain,
which has important theoretical significance and practical value
in FBN analysis.

Many studies have focused on finding modules in brain
networks. For example, Meunier et al. (2009a) studied the
modular partitions of resting-state networks in the human
brain, and investigated the influence of normal aging on the
modular structure. Valencia et al. (2009) investigated modular
organization in resting-state networks at the voxel level, and
showed modules at a finer grain level. Although these studies
on the partition of modules distinguished the different roles and
status of nodes, they did not apply the modular structure to
the analysis of FBNs (e.g., FBN construction, feature learning,
and classification). Recently, many studies applied modularity
prior to FBN construction. For example, Qiao et al. (2016)
estimated FBNs by incorporating modularity prior, and achieved

FIGURE 2 | Illustration of the proposed framework for brain disease

classification, including three major parts: (1) image pre-processing and FBN

construction; (2) feature selection based on MLFS; and (3) classification based

on support vector machine (SVM).

higher classification accuracy based on the modularized FBNs.
Zhou et al. (2018) learned an optimal neighborhood high-order
network with sparsity and modularity priors for MCI conversion
prediction. However, these existing studies cannot explicitly
employ the modular structure to guide the feature selection
of brain networks to improve the diagnostic performance of
early-stage dementia.

3. MATERIALS AND METHODS

In this section, we first introduce the overall pipeline of FBN-
based brain disease classification with the proposed MLFS
method. As shown in Figure 2, this framework contains three
major components, including (1) fMRI pre-processing and FBN
construction; (2) feature selection based on MLFS; and (3) SVM-
based classification.

3.1. Image Preprocessing and FBN
Construction
In this paper, we evaluate our proposed method based on the
dataset from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)1, which is used in a recent study (Wang et al., 2019b).
The dataset contains 563 resting-state fMRI scans from 174
subjects, including 154 normal control (NC) cases, 165 early MCI
(eMCI) cases, 145 late MCI (lMCI) cases, and 99 AD cases. Note
that each participant may have more than one scan (with the time
interval of at least 6 months between two scans). For independent
evaluation, a subject-level cross-validation strategy will be used
in our experiments. The scanning parameters of fMRI data are
as follows: in-plane image resolution = 2.29 ∼ 3.31 mm, slice
thickness = 3.31 mm, echo time (TE) = 30 ms, repetition time
(TR) = 2.2 ∼ 3.1 s, and the scanning time for each subject is
7 min (resulting in 140 volumes). The demographic information
of the studied subjects is summarized in Table 1.

1http://adni.loni.usc.edu/
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TABLE 1 | Demographic information of the involved 563 rs-fMRI scans from the

ADNI database.

Category Gender (M/F) Age (Years) Scan #

AD 55/44 75.04± 7.71 99

eMCI 73/92 72.03± 7.26 165

lMCI 95/50 71.99± 7.67 145

NC 67/87 75.36± 6.16 154

The values are denoted as mean ± standard deviation. M/F, male/female.

We process the rs-fMRI scans involved in this study by
using a standard pipeline in the FSL FEAT software (Jenkinson
et al., 2012). To ensure signal stabilization, the first three
volumes of each subject were discarded. The remaining volumes
are corrected to achieve the same slice acquisition time and
remove the effect of head motion. Specifically, the subjects with
the maximal translation of head motion larger than 2.0 mm
or maximal rotation larger than 2 are excluded. Besides, the
structural skull stripping is performed based on T1-weighted
MRI. Then, the skull-stripped images are aligned onto the
Montreal Neurological Institute (MNI) space. After all subjects
were registered to the common “standard” space, the band-
pass filtering is performed within a frequency interval of
[0.015, 0.15 Hz]. Next, nuisance signals, including white matter,
cerebrospinal fluid, and motion parameters, were regressed
out. Then, the fMRI data are further spatially smoothed by
a Gaussian kernel with full-width-at-half-maximum (FWHM)
of 6 mm. Note that we did not perform scrubbing, since this
would introduce additional artifacts. Finally, the brain space
of fMRI scans is partitioned into 116 pre-defined regions-
of-regions (ROIs) using the Automated Anatomical Labeling
(AAL) template (Tzourio-Mazoyer et al., 2002) via a deformable
registration method (Vercauteren et al., 2009). The BOLD signals
from the gray matter tissue are extracted, and the mean time
series of each ROI is calculated.

After image preprocessing, we use the pairwise Pearson’s
correlation (PC) of the extracted BOLD signals to measure
the functional connectivity between each pair of ROIs. As a
result, we can obtain the estimated FBN for each subject, where
each node corresponds to a specific ROI and each edge weight
denotes the Pearson’s correlation coefficient between BOLD
signals associated with a pair of ROIs. Also, we apply Fisher’s r-
to-z transformation to normalize the edge weights in each FBN.
Note that each FBN is a singed graph, where the positive edge
weights may indicate the mutual promotion and those negative
edge weights may indicate the mutual inhibition (Parente et al.,
2018).

3.2. Modular-LASSO Feature Selection
In this section, we introduce the proposed modular-LASSO
feature selection (MLFS) scheme for selecting features from
the estimated FBNs. As shown in Figure 3, the MLFS contains
three major parts: (1) modular structure extraction via a signed
spectral clustering algorithm, (2) network rearrangement based

FIGURE 3 | Illustration of the proposed MLFS framework that includes three

major parts: (1) modular structure extraction based on signed spectral

clustering, (2) adjacency matrix rearrangement based on the extracted

modular structure, and (3) feature selection based on group LASSO.

on the extracted modular information, and (3) modular structure
induced feature selection via group LASSO.

3.2.1. Modular Structure Extraction
Nodes in an FBN tend to be organized with a modular structure,
which means that nodes in the same module are densely
connected with each other, and nodes of different modules are
sparsely connected (Bechtel, 2003). In practice, one can employ
spectral clustering algorithms to detect the modular structure in
a network (Ng et al., 2002), but traditional spectral clustering
methods require the adjacency matrix of a graph/network to
be unsigned. Therefore, we cannot directly apply conventional
spectral clustering algorithms to signed FBNs for modular
structure discovery. To address this issue, a signed spectral
clustering algorithm (Gallier, 2016) is used to search modular
structures from singed FBNs in this work. Note that we only use
the FBNs of normal controls to identify brain network modules,
so as to make the identified modules more reasonable.

Denote m (m = 116 in this work) as the number of ROIs and
K as the number of clusters (i.e., modules). An FBN is represented
by an undirected weighted graph G(V ,E,W) where V indicates
the node set (i.e., ROIs), E indicates the edge set (i.e., functional
connectivities between paired ROIs), and W ∈ Rm×m is the
graph adjacency matrix estimated by PC. For any i, j ∈ V (i, j =
1, · · · ,m), wij is the weight between a pair of nodes i and j. The
signed degree of the node i is defined as follows:

di =

m
∑

j=1

|wij|, (1)

and the signed degree matrix D ∈ Rm×m is defined as:

D = diag(di, · · · , dm). (2)
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Algorithm 1 Algorithm of singed spectral clustering.

Require:

Adjacency matrixW, cluster/module number K.

Ensure:

Partition (A1, · · · ,AK ) ofW.

1: Construct the signed degree matrix D.

2: Construct the signed graph Laplacian matrix L.

3: Let λ1 ≤ λ2 ≤ · · · ≤ λK be the K smallest eigenvalues of L

and u1, u2, · · · , uK be the corresponding eigenvectors. Then, we can

construct the matrix U = (u1, u2, · · · , uK ) by stacking the eigenvectors

in the column-wise manner.

4: Construct the matrix F based onU by normalizing each row ofU to have

the unit length.

5: By treating each row of F as a point, we cluster all rows in F into K

clusters (via the K-means algorithm) and can obtain the final partition

(A1, · · · ,AK ).

Accordingly, the signed normalized Laplacian L is defined
as follows:

L = I − D−1/2WD−1/2. (3)

Given a partition (A1, · · · ,AK) of V (with K clusters), the signed
normalized cut sNcut(A1, · · · ,AK) (Gallier, 2016) is defined
as follows:

sNcut(A1, · · · ,AK ) =

K
∑

k=1

(Xk)TLXk

(Xk)TDXk
, (4)

where Xk that contains the information of partition is an
indicator vector for Ak, and each cluster will be treated as a
specific module. Minimizing the above objective function in
Equation (4) is equivalent to solving a generalized eigenvalue
equation. The optimization algorithm for the spectral clustering
of signed graphs (i.e., FBNs) is shown in Algorithm 1.

3.2.2. Adjacency Matrix Rearrangement
Based on the modular structure identified by the signed spectral
algorithm, we first rearrange the adjacency matrix W for each
subject so that nodes belonging to the same module are adjacent
to each other, as shown in Step (B) of Figure 3. We then reshape
the rearranged adjacency matrix into an edge vector (removing
the redundant part since the adjacent matrix is symmetric) to
represent each subject. Finally, we pile up the edge vectors of all
subjects into a data matrix (or design matrix) X = [Xw Xb] ∈

RN×d, where N is the number of subjects and d = dw + db
represents the number of total edges (i.e., connectivities).

This design matrix X consists of two parts: (1) Xw ∈ RN×dw

that contains dw within-module edges that connect nodes within
the K modules (with each module as a specific group), and (2)
Xb ∈ RN×db that contains db between-module edges that connect
these K modules and these edges can be divided into db groups
(with each edge corresponding to an individual group). That is,
these d dimensional features can be divided into G = K + db
groups. In this way, each subject can be represented by both
the within-module edge-level features and the between-module
edge-level features of its FBN.

3.2.3. Modular Structure Induced Feature Selection
We further develop amodular structure induced feature selection
method to select the most informative edge-level features from
FBNs for AD-related disease identification based on the group

LASSO algorithm (Jiang et al., 2019). As mentioned before, X ∈

RN×d is the new design matrix for N training samples, and d
have been naturally divided into G groups. Denote dg as the
number of elements in the gth (g = 1, · · · ,G) group, and

Y = [y1, y2, · · · , yN]
T ∈ RN as the response vector, where

yi (i = 1, · · · ,N) represents the class label of the ith subject.
The proposed modularity-induced feature selection method can
be formulated as

min
ω

1

2
‖Y − Xω‖22 + λ

G
∑

g=1

√

dg‖ωg‖2, (5)

where λ > 0 is the regularization parameter, and ω is the to-
be-learned weighted vector which is divided into G groups (with
ωg representing the coefficient corresponding to the gth group).
The second term in Equation (5) can generate a sparse solution
and encourage some groups of ω to be zeros, which helps us
select those edge-level features with non-zero coefficients in ω.
In this way, our extracted modular structure can be explicitly
employed to help identify the most informative edges in FBNs.
We use the SLEP toolbox2 to solve the optimization problem
defined in Equation (5).

3.3. Classification
Based on the selected features, we use a linear SVM
with the default parameter (i.e., C = 1) for AD/MCI
identification and MCI conversion prediction due to the
two following considerations.

(1) The main goal of our experiment is to verify the effectiveness
of the proposed MLFS feature selection method. However,
considering the influence of different steps in the classification
pipeline on the final results, it is difficult to conclude
which step (FCN estimation, feature selection, and classifier)
contributes more to the final accuracy. Therefore, we used the
simplest and most popular classification method.

(2) It is challenging for some complicated deep
learning methods, such as RCNN (Liang and Hu,
2015), BrainNetCNN (Kawahara et al., 2017), and
GraphCNN (Defferrard et al., 2016), to tune hyper-parameters
and train a good model without sufficient training samples
(subjects). In practice, recent studies have shown that the
classical machine learning algorithms tend to perform better
than the deep neural networks (Dadi et al., 2019; Pervaiz et al.,
2020).

4. EXPERIMENTS

4.1. Competing Methods
In the experiments, we compare our proposed MLFS scheme
with several traditional schemes for FBN-based classification.
As shown in Figure 4, according to the different granularity,
we first extract different commonly-used statistics of FBN as
features, including global clustering coefficient, local clustering
coefficient, and edge weights. Then, two popular feature
selection algorithms, i.e., t-test and LASSO, are used to select
discriminative features, followed by the SVM classifier. That is,

2http://yelabs.net/software/SLEP/
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FIGURE 4 | Different schemes for comparison. (1) The Global method extracts global clustering coefficients from FBNs as a one-dimensional vector. We extract local

clustering coefficients from 116 nodes as a 116-dimensional matrix and perform feature selection via (2) t-test (called Note-t-test) and (3) LASSO (called

Node-LASSO). We extract 116× 115/2 network edge weights from 116 nodes as a 6,670-dimensional matrix, and perform feature selection via (4) t-test (called

Edge-t-test) and (5) LASSO (called Edge-LASSO); (6) The proposed MLFS scheme for modularity-guided feature selection. For the fair comparison, the same SVM

classifier is used for these six methods for classification.

the proposed MLFS is compared with five competing schemes,
including (1) Global, (2) Node-t-test, (3) Node-LASSO, (4) Edge-
t-test, and (5) Edge-LASSO. For a fair comparison, we employ the
LIBSVM toolbox provided in Chang and Lin (2011) for SVM-
based brain disease classification for all competing methods.

4.2. Experimental Settings
Three classification tasks are performed to evaluate the
performance of our proposed method and five competing
methods, including (1) MCI conversion prediction (i.e., lMCI
vs. eMCI classification), (2) eMCI vs. NC classification, and
(3) AD vs. NC classification. Considering the fact that one
subject may have multiple scans in the dataset, using scan-level
cross-validation (CV) will cause potential bias in classification.
Therefore, we employ a five-fold subject-level CV strategy to
ensure that the training data and test data are independent.
Specifically, we first divide 174 subjects into five-fold (with
each fold containing the roughly same number of subjects).
Then, we use four-fold as training data to select features and
train the classifier, and the remaining one-fold to validate
classification performance.

Besides, since the parameters involved in feature selection
models may affect the number of selected features and the
ultimate classification results, we conduct an inner five-
fold CV on the training data to determine the optimal
parameters for all competing methods, as shown in
Figure 5 (1). For each parameter, we use 11 candidate values
in [0.01, 0.1, 0.2, · · · , 0.9, 1]. Note that the optimal parameters
may vary with different training sets. Therefore, we re-select
features and re-train classifier (also linear SVM with C = 1)

based on the current training set with optimal parameters, as
shown in Figure 5 (2). Finally, we classify the test sample using
the selected features and trained classifier. To avoid any bias
introduced by random partition in CV, the process of data
partition and five-fold CV are independently repeated 1,000
times, and the mean and standard deviation of classification
results are reported. Besides, to illustrate the result is statistically
significant, we perform paired t-tests (with p < 0.05) on the
results of the involved methods, and then use the term marked
by “*” to denote that the result of MLFS is significantly better
than five competing methods.

We evaluate the performance of different methods via
four evaluation metrics, including (1) accuracy (ACC)
which is the proportion of subjects that are correctly
classified samples in all samples, (2) sensitivity (SEN)
which denotes the proportion of patients that are
correctly classified, (3) specificity (SPE) which is the
proportion of NCs that are correctly predicted, and (4)
the area under the receiver operating characteristic (ROC)
curve (AUC).

4.3. Classification Results
Table 2 summarizes the results of six methods in three
classification tasks, and Figure 6 plots the corresponding ROC
curves. From Table 2 and Figure 6, we have the following
interesting observations.

(1) The proposed MLFS method achieves the significant best
performance in three classification tasks, compared with five
competing methods. Note that the five competing methods
do not consider the modularity information in FBNs. These
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FIGURE 5 | The mechanism of cross-validation in our experiment, including the Inner 5-CV to determine the optimal parameters and the outer 5-CV to get the

classification results.

TABLE 2 | Classification performance of six schemes in three classification tasks (mean ± standard deviation).

Task Method ACC (%) SEN (%) SPE (%) AUC (%)

lMCI vs. eMCI

Global 44.52± 1.99 49.44± 2.73 47.50± 2.51 46.25± 3.81

Node-t-test 59.63± 1.94 64.82± 3.36 48.31± 4.88 65.07± 2.48

Node-LASSO 65.42± 1.47 78.76± 2.83 50.87± 2.50 71.43± 1.98

Edge-t-test 75.03± 2.64 77.52± 2.86 72.50± 5.53 87.86± 2.09

Edge-LASSO 83.00± 1.39 85.70± 1.97 80.29± 1.62 91.89± 1.11

MLFS (Ours) 84.06± 1.72∗ 85.73± 1.84 82.36± 2.39∗ 93.35± 1.28∗

eMCI vs. NC

Global 46.39± 1.98 60.00± 2.50 50.00± 2.67 44.90± 2.70

Node-t-test 50.38± 2.39 71.84± 3.91 60.19± 4.47 53.74± 3.23

Node-LASSO 71.38± 2.14 75.79± 2.41 67.32± 2.24 78.04± 1.56

Edge-t-test 75.23± 2.27 78.07± 3.27 77.11± 3.25 80.56± 1.85

Edge-LASSO 84.17± 1.43 85.57± 1.79 83.11± 2.18 92.85± 0.99

MLFS (Ours) 84.80± 1.41 83.74± 1.80 85.82± 2.19∗ 94.05± 0.98∗

AD vs. NC

Global 56.48± 1.16 61.10± 4.23 58.51± 4.50 51.14± 4.40

Node-t-test 70.31± 1.78 77.41± 2.54 54.29± 5.13 79.33± 1.83

Node-LASSO 74.27± 1.28 82.15± 1.69 62.33± 3.02 82.41± 1.80

Edge-t-test 83.44± 1.10 88.19± 1.57 76.68± 1.64 92.56± 0.62

Edge-LASSO 88.85± 1.51 91.77± 1.15 84.16± 3.92 96.60± 0.39

MLFS (Ours) 90.27± 1.02∗ 92.64± 1.27∗ 86.59± 2.38∗ 97.15± 0.53∗

Bold values indicate the best results in each task.

results imply that using modularity information to guide
the feature selection (as we do in MLFS) helps boost the
classification performance for AD and MCI.

(2) Regarding three different granularity features (i.e., global-
level, node-level, and edge-level), we can see that the
performance of the Global method (based on global feature)
is the worst. Also, methods using edge-level features (i.e.,
Edge-t-test, Edge-LASSO) usually outperform two methods
with node-level features (i.e., Node-t-test, Node-LASSO). The
possible reason is that edge-level features may be able to
capture more topological information of FBNs and tend to
result in more stable performance.

(3) Regarding three feature selection algorithms, methods with
LASSO generally achieve better performance than those with
t-test in three tasks. This may be because that t-test only
considers the category-level differences of features and does
not fully consider the relationship between features and
category labels.

(4) In the task of lMCI vs. eMCI classification, the six methods
achieve worse performance when compared with the other
two tasks (i.e., eMCI vs. NC and AD vs. NC classification).
This implies that identifying late MCI subjects from early
MCI subjects is very challenging, while identifying subjects
with AD/eMCI from normal controls is relatively easier. The
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FIGURE 6 | The ROC curves achieved by all six methods in three classification tasks: (1) lMCI vs. eMCI, (2) eMCI vs. NC, and (3) AD vs. NC.

underlying reason is that the brain function degeneration in
AD and late MCI subjects could be more serious than in the
early stage of MCI and NC.

5. DISCUSSION

In this section, we first analyze the effect of several key
hyperparameters in the proposed method, the impact of different
node-level features on classification performance and the effect
of connections variations in FBN. We then visualize the
most discriminative features (i.e., functional connections) and
modules identified by our method in different classification tasks.
We also present the limitations of this work as well as several
future research directions.

5.1. Effect of Number of Modules
Previous studies have found that human FBNs have a hierarchical
modular organization and have different numbers of modules
in each hierarchy (He et al., 2009; Meunier et al., 2009a; Power
et al., 2011; Rubinov and Sporns, 2011). In our proposed MLFS
scheme, we extract a total ofK modules by using a signed spectral
clustering algorithm, and the number ofmodules would affect the
selected features and further affect classification performance. In
Figure 7, we show the accuracies achieved by our MLFS in three
classification tasks with respect to different numbers of modules.
It can be observed from Figure 7 that, for each specific task,
the accuracy values achieved by MLFS slightly vary when using
different numbers of modules. And the best results are achieved
when using 16, 8, and 14 modules in the task of lMCI vs. eMCI,
eMCI vs. NC, and AD vs. NC classification, respectively.

5.2. Sensitivity to Model Parameters
In Equation (5), the parameter λ is involved in group LASSO,
which may affect the number of selected features. With the
optimal module numbers (i.e., 16 modules for lMCI vs. eMCI
classification, 8 modules for eMCI vs. NC classification, and
14 modules for AD vs. NC classification), we calculate the
classification accuracy of the proposed MLFS with different
values of λ, with experimental results reported in Figure 8. As

FIGURE 7 | Classification accuracy achieved by the proposed method using

different numbers of modules in three classification tasks.

FIGURE 8 | Classification accuracy achieved by the proposed method using

different values of λ in three classification tasks.

shown in Figure 8, the MLFS works well with overall stable
performance in both tasks of eMCI vs. NC and AD vs. NC
classification. In the task of lMCI vs. eMCI classification, the
accuracy results slightly fluctuate with different values of λ. Thus,
we propose to select the optimal parametric values via inner
cross-validation on the training data.
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FIGURE 9 | Classification accuracy achieved by the node-level methods using different node statistics in three tasks of (1) lMCI vs. eMCI, (2) eMCI vs. NC, and (3) AD

vs. NC classification. LCC, local clustering coefficient; DC, degree centrality; BC, betweenness centrality; CC, closeness centrality; EC, eigenvector centrality.

5.3. Effect of Different Node-Level Features
When representing FBNs, node-level features can specifically
locate disease-related regions, so as to help us understand
the pathological mechanism of brain disorders. However,
different node-level statistics extracted from FBNs tend to
capture different network properties. Therefore, it is essential to
analyze the effect of different node-level statistics on the final
classification results. In Figure 9, we calculate the classification
accuracy of the node-t-test method and node-LASSO method
with five different node statistics: (1) local clustering coefficient
(LCC), (2) degree centrality (DC), (3) betweenness centrality
(BC), (4) closeness centrality (CC), and (5) eigenvector centrality
(EC). It can be observed that the performance of different node-
level statistics may vary for different tasks or feature selection
methods. The results based on DC and CC statistics are overall
the best.

5.4. Discriminative Connections and Brain
Regions
With the empirically optimal module numbers (see Figure 7) and
feature selection parameter (see Figure 8), we investigate which
features are selected by the proposed MLFS scheme for AD-
related disease classification. Since features selected in each fold
of cross-validation could be different, we select those features
that occur in all five-fold as the most discriminative features
for classification. Figure 10 shows the most discriminative
connections selected by MLFS in three tasks. In Figure 10, the
color of each arc is randomly assigned for better visualization,
and the thickness of each arc represents the discriminating
power of the corresponding connection (rather than the actual
connectivity strength).

In Figure 11, we visualize the modules identified by our
method with the signed spectral clustering algorithm (see the 1st
and 2nd rows) on the AAL template, and also visualize the most
discriminative modules (see the 3rd row) based on the selected
discriminative connections by our MLFS method. From this
figure, we can observe that our identified discriminative modules
contain several important brain regions, such as the middle
temporal gyrus, hippocampus, para hippocampus, superior
medial frontal gyrus, medial orbitofrontal gyrus, supramarginal

gyrus and the precuneus, which have been reported in previous
AD-related studies (Zhou et al., 2008; Han et al., 2012; Liu et al.,
2012). These results further validate the reliability of our MLFS
in identifying biomarkers for AD/MCI diagnosis.

5.5. Effect of Connections Variations in
FBN
Functional connectivity networks constructed via Pearson’s
correlation (PC)may be sensitive to noise. To investigate whether
the variations of connections will influence our proposed
method, we conduct a group of experiments by adding varying
degrees of white Gaussian random noise to the FBN estimated
by PC, and present the experimental results in Figure 12 (1). It
can be observed that the classification results only show a slight
fluctuation when the noise degree (standard deviation) is <0.1.
However, the classification accuracy will be greatly reduced with
the increase of noise degree.

To further investigate the robustness of our method, we use a
standard bootstrapping process for creating several training sets
(with the same size as the original training set). Then we perform
the training process on these pseudo-sets and create an ensemble
of classifiers. Figure 12 (2) shows the experimental results in
the task of lMCI vs. eMCI classification, involving the original
MLFS method, MLFS with the bootstrapping process (called
MLFS-boot), and five competing methods. It can be observed
from Figure 12 (2) that the proposed method outperforms five
competing methods. Especially, the MLFS-boot method results
in a similar performance to the MLFS method, implying that the
MLFS scheme has relatively good robustness.

5.6. Effect of Different Network
Construction Methods
In the previous experiments, we only used the Pearson’s
correlation algorithm for estimating FBNs, since our main focus
is to use the modularity information for selecting discriminative
and interpretable features. To investigate how our proposed
method is affected by different network construction methods,
we also use sparse inverse covariance (SIC) (Huang et al.,
2010), a popular computation scheme of partial correlation, to
estimate FBNs. Based on the FBNs estimated via SIC, we then
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FIGURE 10 | Most discriminative functional connections in three classification tasks: (1) lMCI vs. eMCI, (2) eMCI vs. NC, and (3) AD vs. NC classification.

FIGURE 11 | Most discriminative modules identified by the signed spectral clustering algorithm (1st and 2nd rows) and our proposed MLFS method (3rd row) based

on the selected discriminative connections in three tasks of (1) lMCI vs. eMCI, (2) eMCI vs. NC, and (3) AD vs. NC classification.

conduct lMCI vs. eMCI classification and report the results of the
proposed method and five competing methods in Table 3.

From Table 3, we have several observations that are similar
to the previous experiments. First, the proposed MLFS method
achieves the statistically significant best performance in lMCI
vs. eMCI classification, compared with five competing methods.
This indicates that our method can achieve the best performance
no matter what kind of brain network estimation algorithm is
used. Second, the performance of the global method (based on
global feature), as always, is the worst. The edge-based methods
usually outperform the node-based methods. And the methods
with LASSO generally achieve better performance than those
with t-test.

Furthermore, from Tables 2, 3, we can see that, with the
same experimental settings, using SIC to estimate FBNs can
get better classification performance than PC. This implies that
FBNs estimated by SIC may have several advantages. On the one
hand, SIC can effectively reveal the partial correlation between
brain regions. That is, the FBN estimated with SIC can factor
out the contribution to the pairwise correlation that might be
due to global or third-party effects. This may result in clearer
modules in FBN. On the other hand, SIC estimation imposes
a “sparsity” constraint on the FBN, which is appropriate to
model brain connectivity because many past studies based on
anatomical brain databases have shown that the true brain
network is sparse.
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FIGURE 12 | (1) Results achieved by the proposed method with varying degrees of FBN random noise in lMCI vs. eMCI classification. (2) Results achieved by the

proposed MLFS-boot method, the MLFS methods, and other five competing methods in lMCI vs. eMCI classification.

TABLE 3 | Classification performance of six schemes in MCI conversion prediction (i.e., lMCI vs. eMCI classification) using sparse inverse covariance to estimate the FBN

(mean ± standard deviation).

Method ACC (%) SEN (%) SPE (%) AUC (%)

Global 46.42± 2.09 45.23± 1.23 47.21± 1.85 46.54± 2.23

Node-t-test 62.47± 2.53 69.29± 3.10 55.47± 4.30 69.78± 2.21

Node-LASSO 65.06± 2.03 73.90± 2.87 55.55± 1.97 70.84± 1.25

Edge-t-test 83.75± 1.52 86.48± 2.13 80.98± 2.24 94.56± 2.09

Edge-LASSO 85.97± 1.72 86.07± 2.15 86.11± 2.20 93.90± 2.12

MLFS (Ours) 86.95± 1.74∗ 87.42± 2.03∗ 86.71± 1.75 95.16± 1.84∗

Bold values indicate the best results in each task.

5.7. Limitations and Future Work
There are several limitations in the current work. First, we
perform modular structure search and feature selection through
two separate steps, so that the identified modular structures are
not necessarily optimal for the subsequent classification task. As
a future work, we plan to explore a joint learning framework
to perform modular structure search and feature selection for
FBN analysis. Second, only the ADNI dataset (with a limited
number of fMRI scans) is used for performance evaluation in
the current study. We will apply the proposed method to identify
other types of brain disorders based on large-scale datasets such
as ABCD (Bjork et al., 2017), ABIDE (Heinsfeld et al., 2018), and
REST-meta-MDD (Yan et al., 2019). Besides, when constructing
functional brain networks, we ignore the temporal information
in the time-series data. It is interesting to employ data-driven
methods (e.g., deep neural networks) to incorporate temporal
dynamics into FBN construction (Wang et al., 2019b; Jie et al.,
2020), which will be our future work.

6. CONCLUSION

In this paper, we propose a modularity-guided functional
brain network (FBN) analysis method, namely MLFS, to
identify discriminative and interpretable features from FBNs for
automated AD/MCI classification. Specifically, we first search

modular information of FBN by a signed spectral clustering
algorithm and then select edge-level network features based on
a modularity-induced group LASSO method. Finally, we use
the selected features to identify different stages of subjects with
AD or MCI. Experimental results on 563 rs-fMRI scans from
ADNI suggest the superiority of the proposed method in three
classification tasks, compared with conventional methods for
FBN-based brain disease diagnosis.
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